DreamPirates logo DreamPirates
entertainment

Of the stent, which is more dangerous, compared to distal migration (proximal migration can lead to glottic obstruction or complete stent breakaway, resulting in suffocation)16,17. The

- By LavadaCrooks
Publish Date : 2021-04-13 06:38:42
of the stent, which is more dangerous, compared to distal migration (proximal migration can lead to glottic obstruction or complete stent breakaway, resulting in suffocation)16,17. The

present study confirmed this through the results of the mechanical test, which showed an improved anti-migration force in relation to the GINA stent backward direction. Moreover, the in-vivo effectiveness was recognized to a certain extent through the evaluation of short-term performance. Migration is a common complication associated with airway stents, especially silicone stent18,19, and several attempts have been made to inhibit the same. The Montgomery T tube was fabricated with a side arm that passes through a tracheostomy, which provides the stent with a fixation to the trachea20. Recently, an external fixation method was introduced, which resolved the cosmetic problem associated with the Montgomery T tube21. However, these methods can only be employed for the management of upper tracheal stenosis. In case of lower tracheal or bronchial stenosis, a bifurcation stent might facilitate the prevention of migration. However, the stent insertion is a challenging endeavor, owing to the size of the stent, which is excessively large, compared to the segment of stenosis22,23. Nevertheless, in order to prevent the migration of the stent, it is necessary to improve the friction (i.e., anti-migration force) using stents of suitable dimensions [diameter larger than the stenosis, but slightly smaller (80–90%), compared to the airway diameter around the stenosis]4,24 as well as by improving the stent surface design (like studs, spikes, or protruding arcs)5,16,21,25,26.

Another important feature of the GINA stent is the flexible, dynamic structure, which enables the reduction of the stent cross-sectional area. The GINA stent has a flat part, similar to the membranous portion of the actual tracheobronchial tree, which makes the stent more contractible and facilitates the removal of airway secretions through an enhanced expiratory flow. Freitag and Kim have already demonstrated that flattening a part of the stent improves the mucostasis13,14,15,27. The current performance study did not observe any substantial difference between th

present study confirmed this through the results of the mechanical test, which showed an improved anti-migration force in relation to the GINA stent backward direction. Moreover, the in-vivo effectiveness was recognized to a certain extent through the evaluation of short-term performance. Migration is a common complication associated with airway stents, especially silicone stent18,19, and several attempts have been made to inhibit the same. The Montgomery T tube was fabricated with a side arm that passes through a tracheostomy, which provides the stent with a fixation to the trachea20. Recently, an external fixation method was introduced, which resolved the cosmetic problem associated with the Montgomery T tube21. However, these methods can only be employed for the management of upper tracheal stenosis. In case of lower tracheal or bronchial stenosis, a bifurcation stent might facilitate the prevention of migration. However, the stent insertion is a challenging endeavor, owing to the size of the stent, which is excessively large, compared to the segment of stenosis22,23. Nevertheless, in order to prevent the migration of the stent, it is necessary to improve the friction (i.e., anti-migration force) using stents of suitable dimensions [diameter larger than the stenosis, but slightly smaller (80–90%), compared to the airway diameter around the stenosis]4,24 as well as by improving the stent surface design (like studs, spikes, or protruding arcs)5,16,21,25,26.

Another important feature of the GINA stent is the flexible, dynamic structure, which enables the reduction of the stent cross-sectional area. The GINA stent has a flat part, similar to the membranous portion of the actual tracheobronchial tree, which makes the stent more contractible and facilitates the removal of airway secretions through an enhanced expiratory flow. Freitag and Kim have already demonstrated that flattening a part of the stent improves the mucostasis13,14,15,27. The current performance study did not observe any substantial difference between the two types of stents with regard to the mucostasis, which might be ascribed to the short observational period.

Lastly, the GINA stent is radiopaque, which makes stent-tracking easier. The radiolucency of silicone stents (such as Dumon stents) has been considered to be a major drawback and efforts have been made to improve the same. Recently, a radiopaque version of the Dumon stent was developed.

Despite the success associated with the development of the GINA stent, the current study does not preclude limitations. First, the sample size of the animals that were involved in the experimental evaluation of the performance of the stents was small and the duration of observation was short. The current study did not observe any substantial difference between the two types of stents with regard to the mucus retention and granulation tissue formation, which is presumed to be due to the short duration of the experiment. The current study observed a difference between the two types of stents with reference to migration. However, it was not statistically significant, on account of the small sample size. Second, the current study did not compare the histology of the tissues at the sites of stent insertion. However, a follow-up study to ascertain the difference between the two types of stents with regard to the degree of injury at the site of stent insertion will be planned in the future. Third, the current study performed the mechanical tests on the basis of the advice provided by the stent manufacturing company (S&G Biotech, Gyeonggi-do, Korea) and previous studies5,28,29. Due to the lack of a validated method, existing studies have used simple or complex methods according to the nature and requirements of the respective studies. Consequently, the authors were compelled to conduct the experiments in a selective manner, in accordance with the laboratory conditions. For instance, it is more desirable to assess the anti-migration force using ex-vivo tracheal tissue or the materials that mimic the same, but we could not. Therefore, the current results should be interpreted with due consideration of the limitations.

In conclusion, the authors have developed a new stent through strategic design, which has reduced migration, despite the low expansion force and increased flexibility, in order to reduce the likelihood of granulation tissue formation. The scenario warrants future clinical trials to demonstrate the efficacy and safety of GINA stents in humans.

e two types of stents with regard to the mucostasis, which might be ascribed to the short observational period.

Lastly, the GINA stent is radiopaque, which makes stent-tracking easier. The radiolucency of silicone stents (such as Dumon stents) has been considered to be a major drawback and efforts have been made to improve the same. Recently, a radiopaque version of the Dumon stent was developed.

Despite the success associated with the development of the GINA stent, the current study does not preclude limitations. First, the sample size of the animals that were involved in the experimental evaluation of the performance of the stents was small and the duration of observation was short. The current study did not observe any substantial difference between the two types of stents with regard to the mucus retention and granulation tissue formation, which is presumed to be due to the short duration of the experiment. The current study observed a difference between the two types of stents with reference to migration. However, it was not statistically significant, on account of the small sample size. Second, the current study did not compare the histology of the tissues at the sites of stent insertion. However, a follow-up study to ascertain the difference between the two types of stents with regard to the degree of injury at the site of stent insertion will be planned in the future. Third, the current study performed the mechanical tests on the basis of the advice provided by the stent manufacturing company (S&G Biotech, Gyeonggi-do, Korea) and previous studies5,28,29. Due to the lack of a validated method, existing studies have used simple or complex methods according to the nature and requirements of the respective studies. Consequently, the authors were compelled to conduct the experiments in a selective manner, in accordance with the laboratory conditions. For instance, it is more desirable to assess the anti-migration force using ex-vivo tracheal tissue or the materials that mimic the same, but we could not. Therefore, the current results should be interpreted with due consideration of the limitations.

In conclusion, the authors have developed a new stent

present study confirmed this through the results of the mechanical test, which showed an improved anti-migration force in relation to the GINA stent backward direction. Moreover, the in-vivo effectiveness was recognized to a certain extent through the evaluation of short-term performance. Migration is a common complication associated with airway stents, especially silicone stent18,19, and several attempts have been made to inhibit the same. The Montgomery T tube was fabricated with a side arm that passes through a tracheostomy, which provides the stent with a fixation to the trachea20. Recently, an external fixation method was introduced, which resolved the cosmetic problem associated with the Montgomery T tube21. However, these methods can only be employed for the management of upper tracheal stenosis. In case of lower tracheal or bronchial stenosis, a bifurcation stent might facilitate the prevention of migration. However, the stent insertion is a challenging endeavor, owing to the size of the stent, which is excessively large, compared to the segment of stenosis22,23. Nevertheless, in order to prevent the migration of the stent, it is necessary to improve the friction (i.e., anti-migration force) using stents of suitable dimensions [diameter larger than the stenosis, but slightly smaller (80–90%), compared to the airway diameter around the stenosis]4,24 as well as by improving the stent surface design (like studs, spikes, or protruding arcs)5,16,21,25,26.

Another important feature of the GINA stent is the flexible, dynamic structure, which enables the reduction of the stent cross-sectional area. The GINA stent has a flat part, similar to the membranous portion of the actual tracheobronchial tree, which makes the stent more contractible and facilitates the removal of airway secretions through an enhanced expiratory flow. Freitag and Kim have already demonstrated that flattening a part of the stent improves the mucostasis13,14,15,27. The current performance study did not observe any substantial difference between the two types of stents with regard to the mucostasis, which might be ascribed to the short observational period.

Lastly, the GINA stent is radiopaque, which makes stent-tracking easier. The radiolucency of silicone stents (such as Dumon stents) has been considered to be a major drawback and efforts have been made to improve the same. Recently, a radiopaque version of the Dumon stent was developed.

Despite the success associated with the development of the GINA stent, the current study does not preclude limitations. First, the sample size of the animals that were involved in the experimental evaluation of the performance of the stents was small and the duration of observation was short. The current study did not observe any substantial difference between the two types of stents with regard to the mucus retention and granulation tissue formation, which is presumed to be due to the short duration of the experiment. The current study observed a difference between the two types of stents with reference to migration. However, it was not statistically significant, on account of the small sample size. Second, the current study did not compare the histology of the tissues at the sites of stent insertion. However, a follow-up study to ascertain the difference between the two types of stents with regard to the degree of injury at the site of stent insertion will be planned in the future. Third, the current study performed the mechanical tests on the basis of the advice provi



Category : entertainment

Plausible Superpowers That Life is Strange Hasnt Tackled Yet

Plausible Superpowers That Life is Strange Hasnt Tackled Yet

- As the new Life is Strange games reveal approaches, there are a few plausible powers that the next games themes and plot could be built from.


Apex Legends Getting Star Wars

Apex Legends Getting Star Wars

- Electronic Arts announces Xbox Game Pass Ultimate subscribers can get their hands on Star Wars weapon charms in Apex Legends for Star Wars Day.


  Wrath of Man hd

Wrath of Man hd

- her life and constant endeavors to declare about female’s right, little by little I started to realize what’s what. As an object for


MLB The Show 21 Stress Test Happening This Month

MLB The Show 21 Stress Test Happening This Month

- With MLB The Show 21 releasing in a couple of months, and headed to Xbox consoles for the first time, a technical stress test is on the way.